Retrofitting for Energy Conservation

William H. Clark II

McGraw-Hill

New York San Francisco Washington, D.C. Auckland Bogotá
Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore
Sydney Tokyo Toronto
Contents

Preface vii

Introduction 1

Part 1 The Methods

Chapter 1. The Domestic Water System 13
Chapter 2. Building Envelope 27
Chapter 3. Ventilation and Infiltration Control 43
Chapter 4. Lighting Projects I 83
Chapter 5. Lighting Projects II 99
Chapter 6. Heating and Cooling Systems 115
Chapter 7. Central Systems 159
Chapter 8. Electrical Projects 197
Chapter 9. Architectural Concepts 207
Chapter 10. Controls 231

Part 2 The Projects

Chapter 11. Water and Steam System Projects 251
 - Project 1 Replacing inefficient hot-water heaters 251
 - Project 2 Steam-trap replacement 256
Air curtain, 38, 220

Baseboard heaters, 41
Below-grade construction, 210–211
Bin analysis, 410–413
Bleed off, 66

Boiler:
boiler blowdown, 160, 176, 184–185
boiler combustion rate, 14, 163–164
feedwater preheating, 22
maintenance, 174–176, 181–183, 194–196
operation, 141–142, 179–180
performance ratings, 182
stack temperatures, 165, 180–181
staging, 164, 246
waste heat recovery, 185, 186

Building loads:
calculations, 4, 157, 338, 342
diversity factors, 28
profile, 27, 221–222, 385–389

Carbon dioxide, ix, 44, 131, 142, 357
Carbon dioxide sensors, 62, 71
Ceiling space projects, 219, 223, 352

Chemical treatment:
cooling towers, 66

Chilled water systems:
heat recovery, 164
performance criteria, 154
protection, 155, 159–161, 236–237
rebuilds, 153–155
staging chillers, 165–166, 235, 246
temperature reset, 131, 235–236, 241–242

Cold air system, 76
Color Rendering Index, 85
Compact fluorescent lamps, 85, 104–105, 319–321
Compressed air, 178–179
Condenser water loop (see Cooling tower)

Controls:
air handlers, 54, 129, 369, 378–380
change over controls, 244–245
demand reset, 130, 237–238
load leveling, 242–243
survey, 47, 327–329
two-stage controls, 243–244

Cooling tower:
fan controls, 134, 166, 293–297
maintenance, 167, 177–178
staging, 168, 188, 189
water control, 133, 176

Daylighting, 30, 99–101, 211, 217, 338, 361

DBase, 400–413
data base, 401–402, 406–407
data entry screen, 402–404
printing out data, 407–410
program module, 404–406

Decoupled system, 80

Dehumidification, 40, 59, 62, 77
Dessicant dehumidification, 73, 81, 191
Desuperheater, 24, 25, 70, 185, 187
Direct expansion (DX) units, 125–126, 145–146, 189–191, 244

Door closer, automatic, 8, 38, 46, 355

Duct:
air velocities, 55, 139–140, 214, 218
cleaning, 132–133, 365
Duct (Cont.):
 - condensation, 73
 - insulation, 74, 75–76
 - seal leaks, 56
 - test & balance, 140

ECM (energy-conservation measures), 8
Economics, viii
Economizer cycle, 15, 73
Economy cycle, 64, 65

Electric:
 - neutral leg losses, 201, 203–204
 - power densities, 216
 - power factor correction, 204–205
 - resistance heating, 23, 121–122
 - systems analysis, 200, 306

Elevator controls, 200–201

Energy:
 - audit, 305–308
 - awareness program, 1, 4
 - conversion factors, xii

Engineering:
 - design fees, 4

Enthalpy sensor, 67–68
Envelope, building, 54
Exhaust hoods, 30, 49, 61

Fans, 116–117
Fan coil unit:
 - four pipe, 61–62
 - two pipe, 50–51

Filter, 239
 - activated carbon, 63

Flat plate heat exchanger, 65, 73, 79, 80, 237
Floors:
 - insulation, 39

Fluorescent lights:
 - analysis, 85, 217, 321–323
 - energy use, 7, 85

Free cooling (see Economy cycle)
Freon ban, viii, x, 415–441

Friction losses:
 - piping, 19–20

Frost protected foundations, 230
Functional space size, 212–214, 215–216
Furnace, 126

Gas-driven chillers, 194

Ground source heat pump, 148, 149–151, 156–157, 311–312

Harmonics, 203, 206
Heat exchanger, 14
 (See also Flat plate heat exchanger)
 - enthalpy wheel, 79, 80
 - heat pipes, 79
 - run around coils, 79
 - shell-in-tube, 25

Heat pump, 121, 269–271
Heat tape or heat tracing, 20, 254, 349, 350
Heavy wall construction, 41
HID lights, 85
Hot deck, 62, 138
Hot gas bypass, 122
Hot water:
 - reset, 14, 15, 59
 - service quantities, 25
 - storage temperature, 13

Humidity survey, 64
Hydronic system:
 - air separation, 134–135
 - balancing system, 135–136
 - bladder tanks, 135
 - controls, 137–138, 169–170, 183–184
 - transmission losses, 162

HVAC:
 - electrical loads, 198
 - rooftop air handler, 331–332

IAQ (see Indoor Air Quality)
Incandescent lights, 85

Indoor Air Quality:
 - humidity rules, ix
 - psychological effects, ix
 - regulations, ix

Induction units, 58

Inrush current, 6

Insulation:
 - ceiling, 31
 - partitions, 40
 - piping, 15, 19

Inventory, 3

Kitchen, 15, 29–30, 48, 215, 224, 242, 309, 330
Landscape use, 36–37, 223, 352
Latent loads, 30, 32
Laundry, 15, 38, 242, 348
Leak inspections, 13

Lighting:
- controls, 90, 96–98, 106, 281, 288–290, 310
- energy use, 92, 101–103, 107–109
- exit sign replacement, 317–318
- exterior lighting, 290–291, 309
- layout, 87–89
- levels, 88, 107
- power allowances, 110–114
- relamping project, 285–288, 334, 398
- security lighting, 277–282
- use schedule, 84
Louvers, gaskets, 47, 51

M & O’s (maintenance and operational projects), 8

Maintenance:
- HVAC, 127
- low cost projects, 7, 8
- program, 2, 3, 240

Management, director, 84

Metal studs & framing, 208–209, 227

Motor:
- balancing, 201–202
- efficiencies, 302
- maintenance, 202
- replacement, 265–268, 323–325, 399
- time clock control, 300–304

Optimized start-stop, 223–234

Outside air:
- calculations, 52, 332–334
- controls, 71, 141, 142–143
- sensors, 53, 354
- standards, 53, 340

Payback:
- present value, xi, 6, 23

Peak load reduction, 199–200

Piping (See also Hydronic system)
- hot & chilled water, 136–137

Point-of-use applications, 220–221

Precooler, 143, 365

Preheat coil, 77

Pressurization, 44–45, 223–225, 226–227

Primary/secondary loop, 234–235

Productivity, 85, 101, 217, 362, 363, 364, 370

Pump laws, 137

Radiant:
- barrier, 39, 228–230, 352
- energy, 28, 42, 218–219, 229–230

Radiator maintenance, 16

Random start-stop, 58

Reflective inserts, 282–285

Refrigerant:
- survey, 47

Reverse return loop, 94–95

Roof:
- color, 37, 221
- curbs, 55
- insulation, 259–264, 325–327
- sprinkler system, 42

R-value, 260–261

Savings:
- accumulating factors, xii

Sick building syndrome, 59, 77, 356, 365
(See also Carbon dioxide, Outside air)

Smoking area, 51

Solar:
- film or screens, 32
- water heating, 23–24, 348, 375

Sound attenuation, 74

Stack effect, 36, 44

Standby losses, 252

Steam:
- distribution system, 168–169, 173–174
- generator, 14, 22
- replacement, 256–258
- traps, 171–173

Submetering, 216–217

Sump pump level control, 17

Switching, 30

Thermal effects:
- bridging, 41, 207–210, 227
- mass effects, 41, 60, 144, 148, 211–212, 238, 340

Thermal storage, 247–248

Thermostats, 117–120, 146, 222, 223, 297–300, 352

Time clocks:
- air conditioning, 126–127, 151, 153, 231–232, 310
Time clocks (Cont.):
circulating pump, 18, 121
lighting, 91
outside air, 72
ventilation systems, 57
water heater, 15
Transformers, 215
sizing, 204
Two speed motor, 69, 79, 134, 144, 156, 167, 189, 237

Unit ventilator, 57
Utility:
demand rate, 5, 238–239
exhaust fans, 49
rate analysis, xi, 4–6, 198–199
U-values, 31

VAV (see Variable air volume)
Vapor barrier, 18, 32, 69–70
Variable air volume:
air flow, 56, 126–127
reheating, 163, 170
retrofitting, 78, 124–125, 130, 170–171
Variable frequency drive, 170
Variable speed pumping, 156, 206
Ventilation, 34, 36, 45–46, 68
Vestibule, 29
Visual comfort, 86, 90–91, 95, 100, 106
Warm up cycle, 58, 59
Waste heat recovery, 38, 191–194
Water heater, 251–256
blanket, 16
controls, 330–331, 337, 348
electric, 23
equipment efficiency ratings, 21
inefficiencies, 22
instantaneous, 20
use per occupant, 17
Water softener, 21–22
Water source heat pump, 147, 151–153, 227
Weather stripping, 8, 359
Water-to-water efficiency, 136
Window:
air conditioning units, 47
double pane, 28, 208
shading devices, 31, 351, 353
storm, 28, 351
shading coefficients, 34
u-values, 29
yearly heat gains, 35
yearly heat losses, 33
Xeriscaping, 349
Zonal cavity method, 89

ABOUT THE AUTHOR

WILLIAM H. CLARK is a mechanical, plumbing, structural, electrical, and lighting engineer who has been active in renovation projects throughout his career. An expert on energy-efficient materials and designs, he is a nationally known authority on retrofitting for energy conservation. Mr. Clark has written articles for numerous trade and technical journals, as well as several computer programs to model energy conservation strategies.
Developing a Research Agenda for Retrofitting Sustainability. Contents. Introduction. Energy conservation for urban housing. Energy conservation in commercial, institutional and industrial buildings. Climate change and built environment. Water management. Energy-relevant factors of building envelopes include window-wall ratio, insulation levels of walls and roofs, the thermal resistance and solar heat gain coefficient of windows, the degree of air-tightness to prevent unwanted exchange of air between inside and outside, and the presence or absence of operable windows. Several energy conservation measures have been documented as contributing to fire ignition. These range from long-term heat entrainment resulting in smouldering ignition to the effects of prismatically focused solar energy on the internal components of solar collectors. This projection assumes that all building retrofits and new construction projects will, at a minimum, utilize the same technology currently used in existing buildings and that the current campus energy consumption pattern will not change significantly in the future. It is possible that actual future energy consumption will be lower as improved or newer energy savings technologies develop and are incorporated into LACC operations. In this subsection some energy conservation measures (ECMs) commonly recommended for commercial and industrial facilities are briefly discussed. It should be noted that the list of ECMs presented below does not pretend to be exhaustive nor comprehensive. In addition to the reduction in the total facility electrical energy use, retrofits of the electrical systems decrease the cooling loads and, therefore, further reduce the electrical energy use in the building. These cooling energy reductions, as well as possible increases in thermal energy use (for space heating), should be accounted for when evaluating the cost-effectiveness of improvements in lighting and office equipment.