MORPHOLOGICAL & HISTOLOGICAL STUDY ON GALL BLADDER OF MARWARI GOAT

Mahesh Bamaniya*, Yogesh Barolia, Rakesh Mathur, Kavita Shende and Sanjeev Joshi,

Veterinary Officer, Project Associate, Professor, Assistant Professor, Professor & Head College of Veterinary and Animal Science, RAJUVAS, Bikaner, (Rajasthan -334001), INDIA
E-mail: maheshbamaniyaaakki@gmail.com (*Corresponding Author)

Abstract: Present study was conducted on the Gall Bladder of 50 adult Marwari goats. Gall bladder is situated at the level of ninth rib. It lies partly in the gall bladder fossa of the liver to which it was adhered and partly remained in contact with the abdominal wall. In the Marwari goat the gall bladder was observed as a pear shaped sac, yellowish-white in colour, which remained filled with green coloured bile juice. Histology of Gall bladder revealed that it was lined by tall columnar ciliated epithelium.

Keywords: Marwari Goat, Gall bladder, Liver, Bile juice.

Introduction

Marwari goat (Capra hircus) is a domestic animal distributed in the Marwar region of Rajasthan (http://www.fao.org). The goat is one of the most important animal and the goat husbandry has been playing an important role in the economy of our country with special reference to milk, meat, manure and hide production (Arora et al., 2013).

In the developing countries, a number of large and small farmers rear goat for their livelihood (Singh et al., 2006). It is known as the ‘poor man’s cow’ in India and as ‘wet nurse’ of infants in Europe (Iqbal et al., 2008). Research on this species has been largely neglected (Bhattarai, 2012), especially its anatomy. So the detailed study of the different aspects of goat anatomy is required. Selection of the species is based on the local inhabitance and meager availability of literature on this quadruped.

The present study is an investigation into the histology of the gall bladder of goat to add the knowledge in this field. It is also hoped that the present results help to elucidate the structure of this organ.

Materials and Methods

The present study was conducted on fifty apparently healthy adult Marwari Goat (Capra hircus) of either sex. About 50 gall bladders were collected from the freshly slaughtered
goats at Municipal slaughter house, Bikaner for morphological study. Out of them 15 gall bladders were taken for histological studies. The samples were taken immediately as soon as possible from the gall bladder. The samples were put in the 10% neutral buffered formalin (Gridley, 1960; Sheehan and Hrapchak, 1987; Carson, 1997).

From each gall bladder, the tissues were collected from thirteen fixed anatomical regions to explore regional differences if any. The tissues were preserved in 10% formal saline for 48 hrs, Bouin’s fluid for 12 hrs, and Zenker’s fluid for 18 hrs. Fixed tissue was latter washed in running tap water for 6-10 hours followed by dehydration in ascending grade of alcohol, clearing, embedding in paraffin wax of melting point of 58-60 °C, preparation of blocks, section cutting (5-6 µm thick), and mounting of section on albuminized slides, drying of sections and finally stained with the following routine histological stains to demonstrate the components of gall bladder.

1. Earlich’s Haematoxylin and Eosin stain for routine observation (Singh and Sulochana 1997).
4. Verhoeff’s elastic stain for elastic and collagen fibres (Singh and Sulochana 1997).
5. Van Gieson stain for collagen fibres. (Singh and Sulochana 1997).
7. Periodic Acid-Schiff (PAS) reaction for glycogen (Luna, 1968).

Result and Discussion

The visceral surface of the liver was related to the reticulum, omasum, duodenum and gall bladder (Fig.1). Gall bladder lies partly in the gall bladder fossa of the liver to which it was adhered and partly remained in contact with the abdominal wall, as mentioned by May (1955) and Pareek (2000) in sheep and Modekar et al. (2003) in goat. It was observed in the present study that gall bladder was situated at the level of ninth rib and its caudal end was located at the eighth inter-costal space; this was similar to the observation of May (1955) and Pareek (2000) in sheep.

In the goat the gall bladder was observed as a pear shaped sac, yellowish-white in colour, which remained filled with green coloured bile juice. These findings were similar to that of Raghavan (1964), Getty (1977) and Nickel et al. (1979) in ruminants. Dyce et al. (1996) mentioned that in small ruminants the gall bladder was more elongated. Sisson and Grossman (1958) reported in horse that the gall bladder was absent and similar findings were also
reported in camel by Grossman (1960) and Smuts and Bezuidenhout (1987). Abidu-Figueiredo et al. (2006) also mentioned that there was no gall bladder in the ostrich. In present study the gall bladder was lined by tall columnar ciliated epithelium with occasional goblet cells (Fig.2). Trautmann and Fiebiger (1957) and Pareek (2000) in sheep mentioned similar findings. There was no gland observed in the mucosa of gall bladder in goat. The human gall bladder is lined by a surface epithelium, composed of columnar cells which bear irregular microvilli with a glycoprotein surface coat, this make the apical surface of the cells become positive with PAS staining (Seiden, 2002). The gall bladder is storage depot for bile. Goblet cells have been also reported in the epithelium of the cow. Mucous, serous, or mixed glands are often seen in the wall of the gallbladder of ruminants, but such goblet cells were not reported in bird generally (Hodges, 1974 and Bacha and Wood, 1990).

Conclusion

It can be concluded from this study that Gall bladder of Marwari goat was situated on the visceral surface and partly lies in the gall bladder fossa of the liver at the level of ninth rib. The yellow-white coloured gall bladder of Marwari goat was pear shaped and contained green coloured bile juice. Histologically the gall bladder of this species was lined by columnar ciliated epithelium with occasional goblet cells.

References

Figures

![Gall bladder (G)](image-url)
Fig. 2 Cross section of gall bladder
Histological and electron microscopic examination of foam cells shows that, depending on the phase of life, the contents of the cell can vary and are structurally quite diverse. Figure 1: (a) Macroscopic picture of the inner surface of the gallbladder with the classic mesh form of cholesterosis. (b) Micropolyp site with gallbladder cholesterosis. When studying the mucous membrane of the gallbladder in patients with cholesterosis, the main accumulations of foam cells are found in the tops of the villi. When foam cells completely fill the entire space of their own plate, forming the shape of a micropip, the stromal elements almost completely disappear. A histological and immunohistochemical study of the epididymis of 21 cats which ranged from 7 to 8 months to 2 years of age was made. Five different cell types were observed in the feline epididymis: principal and basal cells, which were the most numerous, apical and narrow, PAS positive cells, which were scarce, and migratory cells, consisting of lymphocytes and macrophages. The morphological evolution of the epididymal duct of guinea pigs (Cavia porcellus, L.) was studied on 10, 20, 30, 45, 60, 70, 90 and 100 days of age, being complex, which is due to the proper differentiation postnatal in the epididymal epithelium. Thus, it was observed that the initial segment of the epididymis reveals an increase of epithelial height corresponding to the average height of the The concept that motor disorders of the gallbladder, cystic duct, and sphincter of Oddi can cause painful syndromes is attractive and popular, at least in the United States. However, the results of commonly performed ablative treatments (eg, cholecystectomy and sphincterotomy) are not uniformly good. The predictive value of tests that are often used to diagnose dysfunction (eg, dynamic gallbladder scintigraphy and sphincter manometry) is controversial. Functional disorders of the gallbladder (GB) and the sphincter of Oddi (SO) are controversial topics. They have gone by a variety of names, including acalculous biliary pain, biliary dyskinesia, GB dysmotility, and SO (or ampul-lary) stenosis. This articles builds on the Rome III consensus, recognizing that the evidence base is slim.