Bacteriophages (viruses that infect bacteria) are fascinating organisms that have played and continue to play a key role in bacterial genetics and molecular biology. Phage can confer key phenotypes on their host, for example converting a non-pathogenic strain into a pathogen, and they play a key role in regulating bacterial populations in all sorts of environments. The phage-bacterium relationship varies enormously: from the simple predator-prey model to a complex, almost symbiotic relationship that promotes the survival and evolutionary success of both. While infection of bacteria used in the fermentation industry can be very problematic and result in financial losses, in other scenarios phage infection of bacteria can be exploited for industrial and/or medical applications. In fact interest in phage and phage gene products as potential therapeutic agents is increasing rapidly and is likely to have a profound impact on the pharmaceutical industry and biotechnology in general over the coming years. One potential application is the use of phage to combat the growing menace of antibiotic-resistant infections.

Written by eminent international researchers actively involved in the disparate areas of bacteriophage research this book focuses on the current rapid developments in this exciting field. The book opens with an excellent chapter that provides a broad overview of the topics and also highlights the multifaceted nature of bacteriophage research. This is followed by a series of reviews that focus on the current most cutting-edge topics including bioinformatics and genomics, phage in the environment, bacteriophage in medicine, transfer of phage DNA to the host, contribution to host phenotype and much more.

Essential reading for all phage researchers and of interest to molecular biologists and microbiologists working on bacteria in academia, biotechnology and pharmaceutical companies, and in the food and other industries.
MALDI-TOF Mass Spectrometry in Microbiology
Edited by: Markus Kostrzewa and Sören Schubert (Published: 2016)

Aspergillus and Penicillium in the Post-genomic Era
Edited by: Ronald P. de Vries, Isabelle Benoit Gelber and Mikael Rørdam Andersen (Published: 2016)

The Bacteriocins: Current Knowledge and Future Prospects
Edited by: Robert L. Dorit, Sandra M. Roy and Margaret A. Riley (Published: 2016)

Omics in Plant Disease Resistance
Edited by: Vijai Bhadauria (Published: 2016)

Acidophiles: Life in Extremely Acidic Environments
Edited by: Raquel Quatrini and D. Barrie Johnson (Published: 2016)

Climate Change and Microbial Ecology: Current Research and Future Trends
Edited by: Jürgen Marxsen (Published: 2016)

Biofilms in Bioremediation: Current Research and Emerging Technologies
Edited by: Gavin Lear (Published: 2016)

Microalgae: Current Research and Applications
Edited by: Maria-Nefeli Tsaloglou (Published: 2016)

Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
Edited by: Hideharu Shintani and Akikazu Sakudo (Published: 2016)

Virus Evolution: Current Research and Future Directions
Edited by: Scott C. Weaver, Mark Denison, Marilyn Roossinck and Marco Vignuzzi (Published: 2016)

Arboviruses: Molecular Biology, Evolution and Control
Edited by: Nikos Vasilakis and Duane J. Gubler (Published: 2016)

Shigella: Molecular and Cellular Biology
Edited by: William D. Picking and Wendy L. Picking (Published: 2016)

Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
Edited by: Anna M. Romani, Helena Guasch and M. Dolors Balaguer (Published: 2016)

Alphaviruses: Current Biology
Edited by: Suresh Mahalingam, Lara Herrero and Belinda Herring (Published: 2016)

Thermophilic Microorganisms
Edited by: Fu-Li Li (Published: 2015)

Flow Cytometry in Microbiology: Technology and Applications
Edited by: Martin G. Wilkinson (Published: 2015)

“an impressive group of experts” (ProtoView)

Probiotics and Prebiotics: Current Research and Future Trends
Edited by: Koen Venema and Ana Paula do Carmo (Published: 2015)

“this is one text you don’t want to miss” (Epigenie); “up-to-date information” (ChemMedChem)

Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
Edited by: Andreas Burkovski (Published: 2015)

“Without question a valuable book” (BIOSpektrum)

Advanced Vaccine Research Methods for the Decade of Vaccines
Edited by: Fabio Bagnoli and Rino Rappuoli (Published: 2015)

Full details at www.caister.com
A bacteriophage (/bækˈtɪərioʊfɛg/), also known informally as a phage (/féɪdʒ/), is a virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν (phagein), meaning "to devour".

Bacteriophages are composed of proteins that encapsulate a DNA or RNA genome, and may have structures that are either simple or elaborate. Their genomes may encode as few as four genes (e.g. MS2) and as many as hundreds of genes. Phages replicate within the Bacteriophages. This is the currently selected item. Animal & human viruses. Evolution of viruses. The biology of Zika virus. Science·Biology·Viruses·Viruses. Bacteriophages. Bacteria-infecting viruses. The lytic and lysogenic cycles. Google Classroom. Facebook. Twitter. Email. Introduction. Even bacteria can get a virus!
Bacteriophages (viruses that infect bacteria) are fascinating organisms that have played and continue to play a key role in bacterial genetics and molecular biology. Phage can confer key phenotypes on their host, for example converting a non-pathogenic strain into a pathogen, and they play a key role in regulating bacterial populations in all sorts of environments.